Chromosomal Inheritance of Epigenetic States in Fission Yeast During Mitosis and Meiosis

Shiv I. S. Grewal and Amar J. S. Klar
Gene Regulation and Chromosome Biology Laboratory
ABL–Basic Research Program
National Cancer Institute–Frederick Cancer Research and Development Center
Frederick, Maryland 21702-1201
Epigenetics

• **Hereditary changes** that affect gene expression without changing the DNA sequence

• **Epigenetic silencing** regulates important biological processes

 – **Imprinting**: alleles are expressed in a parent-of-origin-specific manner
 – **X-chromosome inactivation**: random inactivation of one female X chromosome
 – **Silencing of repetitive sequences** (centromeres, telomeres,...)
Epigenetic control of gene expression

Different epigenetic marks affect gene expression

DNA methylation
Histone modifications
Histone variants
Small RNAs

Position effect variegation (PEV) in Drosophila

- PEV first described by **Muller in 1930**
- Gene is placed **near centromere or telomere** (heterochromatin)
- The imprinted ON and OFF states are **inherited for several generations**

How the heterochromatin spreads and causes silencing?
How this information is inherited during cell division?

https://smallscienceworks.com/tag/position-effect-variegation/
Position effect variegation in Drosophila

- **Suppressor of PEV (SU(VAR)):** HP1, SU(VAR)3-9

- Several SU(VAR) regulate expression by affecting heterochromatin structure or histone modifications
The regulation of heterochromatin spreading

- Multiple proteins recruited
- Addition of silencing marks
- Removal of activating marks

Heterochromatin Euchromatin

Allshore and Madhani, 2017
Fission yeast is an important model for epigenetic regulation

- **Position Effect Variegation** similar to Drosophila when reporters are integrated near centrome telomeres and the mating-type regions

- These regions show **heterochromatin properties**: Silenced, No recombination, spread of silencing to reporter

- **Research in Fission yeast** has led to **fundamental discoveries** about heterochromatin formation and inheritance and discovery of RNAi-dependent heterochromatin formation.

 - Shares many chromatin modifications with higher organisms but,
 - Unicellular organism, easy to grow, unlimited material
 - Only 3 chromosomes
 - Simpler centromeric regions
 - In many cases only one copy of regulatory genes

Allshire, and Ekwall 2015 Cold Spring Harb
Life cycle of *S. pombe*

Wild-type homothallic *h*\(^90\) cells, switch mating type to opposing type 75-90% of cell divisions

N starvation triggers the sexual phase
Mating type locus in *S. pombe*

- Transcriptionally active *mat1* and transcriptionally silent *mat2-P* and *mat3-M*

![Diagram of mating type locus](image)

- *mat2-mat3* region has heterochromatic features: Silent, no recombination, silent reporters

- Recombination between *mat1-P* and *mat3-M* or *mat1-M* and *mat2-P*

- Position of *mat2* and *mat3*, rather than genetic information conditions the recognition of the donor in each switch: specific chromatin organization.

Thor and Klar, 1993
Regulators of silencing over the mating-type region

- Genetic screens identified loci that cause \textit{mat2-P/mat3-M} derepression and allow recombination in the \textit{mat2-P/mat3-M} region (suggests loss of heterochromatin).

<table>
<thead>
<tr>
<th>Locus</th>
<th>Function</th>
<th>Motifs/similarity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{clr1}</td>
<td>Putative DNA-binding protein</td>
<td>3 zinc fingers</td>
<td>Than and Klar, 1992; G. Than and A. Klar (personal communication)</td>
</tr>
<tr>
<td>\textit{clr2}</td>
<td>Unknown</td>
<td>No similarities in database</td>
<td>Ekw'all and Ruusala, 1994; Than et al., 1994</td>
</tr>
<tr>
<td>\textit{clr3}</td>
<td>Putative histone deacetylase</td>
<td>Human HDAC4 and HDAC5, \textit{S. cerevisiae} Hda1</td>
<td>Ekw'all and Ruusala, 1994; Than et al., 1994; Grewal et al., 1998</td>
</tr>
<tr>
<td>\textit{clr4}</td>
<td>Chromatin modifier</td>
<td>SET and Chromo domains/\textit{Drosophila} Suvar3-9 and Polycomb, human SUV39H1</td>
<td>Ekw'all and Ruusala, 1994; Than et al., 1994; Ivanova et al., 1998</td>
</tr>
<tr>
<td>\textit{clr6}</td>
<td>Putative histone deacetylase</td>
<td>Human HDAC1 and HDAC2, \textit{S. cerevisiae} Rpd3 and Chromo and Shadow domains/Polycomb and heterochromatin protein HP1 from \textit{Drosophila} mouse and humans</td>
<td>Grewal et al., 1998</td>
</tr>
<tr>
<td>\textit{swi6}</td>
<td>Chromatin modifier</td>
<td>Xeroderma pigmentosum group E(XP-E) DNA repair protein</td>
<td>Lorentz et al., 1994</td>
</tr>
<tr>
<td>\textit{rik1}</td>
<td>Putative DNA binding protein</td>
<td>Xeroderma pigmentosum group E(XP-E) DNA repair protein</td>
<td>Egel et al., 1989; O. Nielsen (GenBank Accession #AP136156)</td>
</tr>
</tbody>
</table>

- These genes are conserved and were identified as factors involved in heterochromatin formation during Position Effect Variegation in Drosophila.

\textit{clr4} = \textit{SU(VAR)3-9}
\textit{swi6} = \textit{HP1}

- These loci also affect silencing of reporter genes near telomeres or centromeres
Chromosomal Inheritance of Epigenetic States in Fission Yeast During Mitosis and Meiosis

- Reporters inserted adjacent to mat2-P and mat3-M become silent: heterochromatin spread

Figure 1

KΔ::ura4

- Donor loci remain silent: no RNA expression of mat2-P/mat3-M by Northern blot.
Variegation of ura4 expression in \(K\Delta::ura4 \)

- Single colony of \(h90; K\Delta::ura4 \) with Ura+ phenotype (grow in URA-) grown in rich medium and plated on URA- and FOA medium

Although all cells are \textit{genetically identical}...

...they observed \textit{variegation} in the expression of the Ura reporter

Silencing of the \textit{ura4} reporter
The Ura phenotype correlates with the mating-type switching

Efficiency of mating-type interconversion:

- Pedigree analyses of haploid cells
- Iodine staining of individual colonies

Switched type to ~30% of cell division
(80% in WT cells)
Colony stained lightly: LIGHT form

Switched type to ~65% of cell division
Colony stained darkly: DARK form

Ura4+ expression reduces the efficiency of mating type switch

Diagram:
(URA- plates)
(Ura+)
Individual haploid cells
mitosis
how many generations?

(FOA plates)
(Ura-)

\[\text{Ura}^+ \] \[\text{Ura}^- \]
Light and dark states correlate with *ura4* expression

- To test if the URA+ and URA- phenotypes were the results of differences in *ura4* expression

Figure 1

<table>
<thead>
<tr>
<th>Northern analysis</th>
<th>ura4Δ</th>
<th>ura4</th>
<th>Light</th>
<th>Light from dark</th>
<th>Dark</th>
<th>Dark from light</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YEA</td>
<td>YEA</td>
<td>YEA</td>
<td>YEA</td>
<td>YEA</td>
<td>FOA</td>
</tr>
</tbody>
</table>

cdc2
ura4
Internal loading
Medium
An epigenetic-based change is responsible for the light and dark phenotypes.

- Is the variegation of light and dark states controlled by:
 - **mutational alterations**: extremely stable and low interconversion rate
 - **an epigenetic mechanism**: higher rates of interconversion

Mitotic stability assay:
25 generation, non selective medium
Plate on URA- and FOA

- URA- \[\rightarrow\] FOA
 - 98-99% Ura+
 - 1-2% Ura-

- FOA \[\rightarrow\] URA-
 - 98-99% Ura-
 - 1-2% Ura+

- URA- \[\rightarrow\] FOA
 - 98-99% Ura+ 1-2% Ura-

- FOA \[\rightarrow\] URA-
 - 98-99% Ura- 1-2% Ura+

Light and dark states are **mitotically metastable**
Frequency much **higher than expected** for spontaneous mutations
Mutations in Trans-Acting regulators suppress Variegation

- Since \textit{clr}- and \textit{swi6}- have been implicated in silencing of mating-type loci, they tested their effect on variegation of the \textit{KΔ::ura4} reporter

- Introgressed the different mutations into Ura+ cells

Figure 2

<table>
<thead>
<tr>
<th>Background</th>
<th>N/S</th>
<th>URA(^-)</th>
<th>FOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{clr1}(^-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{clr2}(^-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{clr3}(^-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{clr4}(^-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{swi6}(^-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{ura4Δ} (Control)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{ura4}(^+) (Control)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Growth on FOA in \textit{clr2}- and \textit{swi6}- is due to rearrangements where the K-region is lost.

how would it be if the mutations were introgressed in Ura- Cells?
Are the Dark and Light states chromosomally inherited and meiotically stable?

If states are meiotically stable and chromosomally inherited, they should co-segregate with the HIS marker.
Light and Dark states are linked to the K-Region and inherited as a Mendelian genetic marker.

Figure 3

<table>
<thead>
<tr>
<th>SPG27 (L) (h^{90}, $K\Delta::ura4$, his2, ade6-210)</th>
<th>SPG51 (D) (h^{90}, $K\Delta::ura4$, ade6-216)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>Weak</td>
</tr>
<tr>
<td>Light</td>
<td>Dark</td>
</tr>
</tbody>
</table>

- Reverse the phenotypes of SPG27(L) and SPG51(D) to SPG27(D) and SPG51(L) and cross...
- Analyzed 18 tetrads, all of which showed a 2:2 segregation, supporting their conclusions.
Main findings

• An epigenetic mechanism regulates the efficiency of mating-type interconversion and silencing of a marker gene in the K-region.

• Generation or propagation of these epigenetic states is under the control of *clr1, clr2, clr3, clr4*, and *swi6*

• Epigenetic states remain stable and are chromosomally inherited during mitosis and meiosis as Mendelian genetic markers
Model of chromosomal inheritance of the Light and Dark Epigenetic States

- States highly stable: able to self-perpetuate probably during DNA synthesis
- Some of the genes that affect k-region silencing (clr, swi6,…) can directly bind to chromatin
- Nucleoprotein complexes might remain bound to chromatin during S-phase to self-replicate
Further studies

• What is the mechanism of silencing over the reporter?
 – spread of silencing from the \textit{mat2-P} and \textit{mat3-P} loci

• What is the mechanism of epigenetic inheritance?
 – Why the states change from light/dark or vice versa? Error in assembly? Regulated?
Further studies

• What is the mechanism of silencing/heterochromatin formation over the reporter?
 – spread of silencing from the $mat2$-P and $mat3$-P loci

Model of RNAi-mediated heterochromatin assembly

- siRNA-mediated silencing
- Histone binding proteins
- Histone modifiers

Further studies

- What is the mechanism of epigenetic inheritance?
- Why the states change from light/dark or vice versa? Error in assembly? Regulated?

Allshore and Madhani, 2017
Conservation of factors implicated in heterochromatin formation

<table>
<thead>
<tr>
<th>Component</th>
<th>S. pombe</th>
<th>Neurospora</th>
<th>Drosophila</th>
<th>Mouse</th>
<th>Arabidopsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitious DNA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DNA methylation</td>
<td>No</td>
<td>Yes</td>
<td>No*</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>H3K9 methylation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HP1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No*</td>
</tr>
<tr>
<td>Small RNAs</td>
<td>Yes</td>
<td>No*</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Pol II</td>
<td>Yes</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RDR</td>
<td>Yes</td>
<td>No*</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Yes indicates that the factor has been implicated to have a role in heterochromatin formation in the given organism. No indicates that the factor is not present in the organism. No* indicates that the organism has the factor but that it seems not to have a role in heterochromatin formation. ND means that the organism has the factor but whether it has a role in heterochromatin formation is unknown. Arabidopsis, Arabidopsis thaliana; Neurospora, Neurospora crassa; RDR, RNA-dependent RNA polymerase. (Table adapted from ref. 19.)
Conservation of RNAi pathway

<table>
<thead>
<tr>
<th>Schizosaccharomyces pombe</th>
<th>Arabidopsis thaliana</th>
<th>Caenorhabditis elegans</th>
<th>Drosophila</th>
<th>Homo sapiens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dcr1</td>
<td>DCL1 to 4</td>
<td>Dcr-1</td>
<td>Dcr1 and 2</td>
<td>Dcr-1</td>
</tr>
<tr>
<td>Agol</td>
<td>AG01 to 10</td>
<td>Rde-1, Alg-1, and -2</td>
<td>Agol to 3, Piwi</td>
<td>Agol to Ago4</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>Prg-1 and 2, and 19 others</td>
<td>Aubergine/Sting</td>
<td>Piwi1 to Piwi4</td>
</tr>
<tr>
<td>Chp1<sup>a</sup></td>
<td>CMT3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Tas3<sup>b</sup></td>
<td>—</td>
<td>AIN-1</td>
<td>GW182</td>
<td>TNRC6</td>
</tr>
<tr>
<td>Rdpl</td>
<td>RDR1 to 6</td>
<td>Ego-1, Rrf-1 to -3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hrr1</td>
<td>SGS2/SDE3<sup>c</sup></td>
<td>ZK1067.2</td>
<td>GH20028p</td>
<td>KIAA1404</td>
</tr>
<tr>
<td>Cid12</td>
<td>—</td>
<td>Rde-3, Trf-4<sup>c</sup></td>
<td>CG11265<sup>c</sup></td>
<td>FOLC<sup>c</sup></td>
</tr>
<tr>
<td>Swi6</td>
<td>LHP1 (TFL2)</td>
<td>Hpl-1, Hpl-2, F32E10.6<sup>d</sup></td>
<td>HP1a, b</td>
<td>HP1α, β, γ</td>
</tr>
<tr>
<td>Clr4</td>
<td>SUVH2 to 6</td>
<td>Su(var)3-9</td>
<td>Su(var)39h1 and 2</td>
<td></td>
</tr>
<tr>
<td>Rik1<sup>e</sup></td>
<td>DDB1</td>
<td>M18.5</td>
<td>Ddb1</td>
<td>Ddb1</td>
</tr>
<tr>
<td>Cu14</td>
<td>CUL4</td>
<td>Cu14</td>
<td>Cu14</td>
<td>Cu14</td>
</tr>
<tr>
<td>Sir2</td>
<td>SIR2</td>
<td>Sir2-1</td>
<td>Sir2</td>
<td>SirT1</td>
</tr>
<tr>
<td>Clr3</td>
<td>HDA6</td>
<td>Hda-1</td>
<td>Rpd3</td>
<td>HDAC1</td>
</tr>
<tr>
<td>Clr6</td>
<td>—</td>
<td>DDM1</td>
<td>CG6393</td>
<td>THEX1</td>
</tr>
</tbody>
</table>

Martienssen R and Moazed, D, 2015
How this information is inherited during cell division?

Epigenetic inheritance of CG methylation

Semiconservative inheritance of CG methylation

Bostic, M et al, Science 2007
How the heterochromatin spreads and causes silencing?

The regulation of heterochromatin spreading

a Writer
Reader

b Nucleosome depletion

c Nucleosome turnover

d Opposing PTMs

Nature Reviews | Molecular Cell Biology
Allshore and Madhani, 2017
<table>
<thead>
<tr>
<th>Strain Number</th>
<th>mat Region</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1000</td>
<td>h^{90}</td>
<td>$\text{swi6-115, leu1-32, ura4, his2, ade6-210}$</td>
</tr>
<tr>
<td>SPG16</td>
<td>h^{90}, $K\Delta:ura4$</td>
<td>$\text{swi6-115, leu1-32, ura4, his2, ade6-210}$</td>
</tr>
<tr>
<td>SPG27</td>
<td>h^{90}, $K\Delta:ura4$</td>
<td>$\text{leu1-32, ura4, his2, ade6-210}$</td>
</tr>
<tr>
<td>SPG51</td>
<td>h^{90}, $K\Delta:ura4$</td>
<td>$\text{leu1-32, ura4, ade6-216}$</td>
</tr>
<tr>
<td>SPG60</td>
<td>h^{90}, $K\Delta:ura4$</td>
<td>$\text{clr1-5, leu1-32, ura4, his2, ade6-216}$</td>
</tr>
<tr>
<td>SPG62</td>
<td>h^{90}, $K\Delta:ura4$</td>
<td>$\text{clr3-735, leu1-32, ura4, his2, ade6-210}$</td>
</tr>
<tr>
<td>SPG64</td>
<td>h^{90}, $K\Delta:ura4$</td>
<td>$\text{clr4-681, leu1-32, ura4, his2, ade6-210}$</td>
</tr>
<tr>
<td>SPG66</td>
<td>h^{90}, $K\Delta:ura4$</td>
<td>$\text{clr2-760, leu1-32, ura4, his2, ade6-216}$</td>
</tr>
<tr>
<td>SPG74</td>
<td>h^{90}, $K\Delta:ura4$</td>
<td>$\text{leu1-32, ura4-D18, his2, ade6-210}$</td>
</tr>
</tbody>
</table>
Swi6 co-localizes with centromeres, telomeres and mating-type regions

Ekwall et al, 1995, Science
What constitutes a good presentation?

• **Introduction** (10 min):

 • Explain the *relevant background/techniques* needed to understand the paper.

 • Use material from other papers and reviews on the reading list or other papers.

• **Paper** (20-30 min):

 • Don’t have to explain every figure of the paper in great detail.

 • Convey the *main message* of the paper concisely, while *critically analyzing* the validity of the data presented.

 • Try to understand the *materials and methods* but you don’t need to introduce every detail of the techniques used.

 • Try to end with a *statement of the main findings* of the paper, and what would be the *next logical questions* to ask in this field.