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SI Materials and Methods
Source of DNA. Larvae (96± 1 h old; 14 queens and 25workers)were
collected fromCanberra hives in October 2008 and froze on dry ice.
The average weight of a single larva was 230.6 mg for queens and
133.5 mg for workers. Total DNAs were extracted from the larval
heads (≈1.6 mm of the frontal end) containing brain, optic and re-
tinular ganglia, neurosecretory cells, glands (corpora allata, corpora
cardiaca), suboesophageal ganglion, a small number of fat bodies,
the maxillae, labium, and mandibles, segmented imaginal antennae
developing in hypodermal pockets, the openings of silk glands ducts
at the tipof the labium-hypopharynx, trachea, andcuticle.The rest of
the larval body is predominantly occupied by a large digestive system
filled with processed food and bacteria (larvae do not defecate),
a tracheal network, and reproductive parts that at this stage of de-
velopment are already large in queens and rudimentary in workers.
DNA was purified with the MasterPure DNA purification kit

(Epicentre Biotechnologies, catalog no. MCD85201). Following
the manufacturer’s protocol, the final prep was additionally ex-
tracted with phenol–chloroform and precipitated with 2 vol of
absolute ethanol and the pellet dissolved in TE buffer (10 mM
Tris_HCl, 1mMEDTApH8.2). TheDNAs’ quality was evaluated
by spectral analysis. The final yield was 2 μg of DNA per worker
head and 2.3 μg of DNA per queen head.

BisulfiteSequencing (BS-Seq)of LarvalDNAs.GenomicDNAs extracted
from honey bee larvae were used to generate BS-Seq libraries using
a previously published protocol (1). Briefly, DNAs were sheared
using a Bioruptor, modified by a pair of universal adapters, treated
with sodium bisulfite, and then PCR amplified. The PCR products
were then digested by DpnI to remove the universal adapters. The
resulting DNAwas used to generate single-end Illumina sequencing
libraries following Illumina’s library generation protocols. The li-
braries were sequenced on a high-throughput sequencing machine,
Illumina Genome Analyzer IIx (GAIIx), following the manu-
facturer’s instructions. The sequences have been submitted to the
National Center for Biotechnology Information Sequence Read
Archive database under accession no. SRA047112.1.

Mapping and Methylation Assessment. Sequencing data were pro-
cessed first by the Illumina Data Analysis Pipeline, and then
bisulfite-converted sequencing reads were aligned to the honey
bee genome (official release 2.0) using BS Seeker software (2).
Reads containing consecutive CHN (H = A or T or C) nu-
cleotides are the product of incomplete bisulfite conversion (1)
and were discarded. To increase the accuracy of methylation
calls, only those cytosines fulfilling neighborhood quality stand-
ards were counted (bases of quality 20 or more, flanked by at
least three perfectly matching bases of quality 15 or more). Only
the reads mapping uniquely were used. These postmapping steps
were carried out using the tools included in libngs (http://github.
com/sylvainforet/libngs).
The methylation status of each CpG dinucleotide and differ-

ential methylation were assessed using our previously published
methods (3). In brief, the methylation status of each cytosine
base was modeled by a binomial distribution, with the number of
trial equal to the number of mapping reads and the probability
equal to the conversion rate. A base was called methylated if the
number of reads supporting a methylated status departed from
this null model significantly at the 5% level after correcting for
multiple testing (4). Differentially methylated genes were iden-
tified using generalized linear models of the binomial family; the
response vector CpGmeth (number of methylated and nonmethy-

lated reads for each CpG in a gene) was modeled as a function of
two discrete categorical variables, the caste and the CpG postion:
CpGmeth = caste × CpGi. P values were corrected for multiple
testing using the Benjamini and Hochberg method (4). These tests
were carried out using the R statistical environment (http://www.
r-project.org).

Other Bioinformatics Analyses.Gene ontology (GO) annotations of
the honey bee predicted genes were produced using blast2go
software (5). Pathway annotations were retrieved from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) website (6). The
annotations of the pathways presented in this article were
manually refined using homology to the fly and human genes.
Enrichment in GO terms and KEGG pathways was assessed
using the GOstat module of the Bioconductor platform (www.
bioconductor.org).

Alternative Splicing Analysis. We used SibSim4 (http://sibsim4.
sourceforge.net/) to produce spliced alignments of all of the honey
bee transcriptome sequences available from GenBank, including
RNA-seq data [accession nos.: SRX025526 – whole body (i),
SRX025527–whole body (ii), SRX025528–abdomen, SRX025529 –
mixed antennae, SRX025530 – embryo, SRX025531 – brain and
ovaries pooled, SRX025532 – testes, SRX025533 – larvae, and
SRX016658 – queen ovaries], with Apis mellifera scaffolds assem-
bly v.2.0. All subsequent analyses were performed using purpose-
written scripts. For manual analysis alignments were visualized in
GBrowse v.1.64 run on a local Linux server after converting Sib-
Sim4 output to GBrowse track files. For alternative splicing anal-
ysis false positives caused by sequencing errors or spurious
alignmentswere avoided by only using canonical splice sites, falling
into annotated gene models, and supported by at least five reads.

Molecular Methods. All molecular biology experiments were per-
formed as previously described (3, 7, 8). A combined TRIzol/
Qiagen RNeasy protocol was used for RNA purification followed
by first strand synthesis (Superscript III protocol). Starting mate-
rial was 2–4 pooled larval heads, 1–5 pooled brains, and 1/4–1/2
ovary, per biological replicate, respectively. Total RNA input was
2 μg for larval heads, 0.4–1.0 μg for brains, 5 μg for ovaries.

PCR Amplification. Cycling conditions for StepOnePlus. Initial de-
naturation at 95 8C for 5 min, followed by 40 cycles of 95 8C for
30 s, 60 8C for 30 s, 72 8C for 45 s, and a standard melt profile.
Quantitation. Quantitation data were analyzed with StepOne v.2.1
software and Excel spreadsheets using DDCt comparative quan-
titation method assuming 100% amplification efficiencies and
ugt or Alk 2 as reference amplicons.
RNA-seqreadsmapping.RNA-seq reads [accession nos.: SRX025526 –
whole body (i), SRX025527 – whole body (ii), SRX025528 – ab-
domen, SRX025529 – mixed antennae, SRX025530 – embryo,
SRX025531 – brain and ovaries pooled, SRX025532 – testes,
SRX025533 – larvae, and SRX016658 – queen ovaries] were
mapped to the Apis mellifera scaffolds assembly v.2.0 using sim4
(9) and visualized in GBrowse v.1.64 run on a local Linux server
after converting data to tracks with purpose-written scripts.
Primers.

AlkA-F1 TGTATCAATGTGCAGTCAGAAAAC
AlkB-F1 GAAACGCGAGTCGCGAAGAT
Alk-R1 TGCCATTCCTCCTGTCTACA
Alk-F2 GGCAGCATGGAAATCAAGAAGTTC
Alk-R2 AAACGCATAGCCGTAGAAACTGCA
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Anti-Alk-F1 TAACCAATTCTCTCGACGATAG
Anti-AlkA-R1 AACAACTTCTGTTTATATACTGGT
Anti-AlkB-R1 AAATAAAATTTGTTTGAAACTTAC

UGT-F1 CGTTGATGCTGATCAGGTTG forward exon 19/
20 junction

UGT-R1 CGTCGAAATCGCTTCAAGTC reverse exon 20.
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Fig. S1. Annotation of the tricarboxylic acid (TCA) cycle in Apis showing methylated and differentially methylated genes. In those cases in which more than
one paralog has been found only one is referred to by the consensus protein name, with the others designated by the GB numbers from the official Apis gene
list (www.beebase.org). The orange arrows indicate several exit/entry points by which the TCA cycle is connected to a larger metabolic and regulatory network
at the whole-cell level. Among major metabolic pathways converging on the TCA cycle are both catabolic and anabolic reactions involved in carbohydrate and
fat metabolism. More information on each gene is in Table S3.
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Fig. S2. Annotation of the ubiquitin/proteasome pathway in Apis, showing methylated and differentially methylated genes. In those cases in which more
than one paralog has been found only one is referred to by the consensus protein name, with the others designated by the GB numbers from the official honey
bee gene list (www.beebase.org). Detailed descriptions of each gene are in Table S5.

Table S1. List of differentially methylated genes in queen and worker larvae

Table S1 (DOC)

CpGs denotes the number of CpG dinucleotides supported by at least four reads and significantly methylated in one of the castes. A generalized linear
model of the binomial family was used to identify genes that are differentially methylated between castes. The methylation level of each gene was modeled as
a function of the caste and of each of its CpG dinucleotides. In the table, “Caste” indicates whether the caste is a statistically significant factor explaining
differences in methylation levels, and “CpG” represents the different dinucleotides of that gene.
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Table S2. List of 31 conserved domains most common in methylated genes

Table S2 (DOC)

Table S3. Detailed description of genes related to the tricarboxylic acid (TCA) cycle, the insulin/TOR network, and the ubiquitin/
proteasome pathway

Table S3 (DOC)

Table S4. Examples of differentially expressed and/or methylated genes implicated in key pathways of honey bee larval development

Table S4 (DOC)

Table S5. Gene families encoding Apis proteins involved in defined functions and showing nonubiquitous patterns of expression

Table S5 (DOC)

This analysis was done on protein domains rather than pathways because the KEGG database is restricted to highly conserved genes (only ~3,000) and does
not encompass the less conserved and typically nonmethylated domains.

Table S6. Genes differentially expressed in worker larvae after juvenile hormone treatment showing differential pattern of methylation
in queens and workers

Table S6 (DOC)
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