Role of RNA polymerase IV in plant small RNA metabolism

Xiaoyu Zhang, Ian R. Henderson, Cheng Lu, Pamela J. Green, and Steven E. Jacobsen

PNAS 2007;104;4536-4541; originally published online Mar 5, 2007;
doi:10.1073/pnas.0611456104

This information is current as of March 2007.
Role of RNA polymerase IV in plant small RNA metabolism

Xiaoyu Zhang†, Ian R. Henderson†, Cheng Lu‡, Pamela J. Green‡, and Steven E. Jacobsen†§¶

†Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095; ‡Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711; and §Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095

Edited by Susan R. Wessler, University of Georgia, Athens, GA, and approved January 22, 2007 (received for review December 22, 2006)

In addition to the three RNA polymerases (RNAP I–III) shared by all eukaryotic organisms, plant genomes encode a fourth RNAP (RNAP IV) that appears to be specialized in the production of siRNAs. Available data support a model in which dsRNAs are generated by RNAP IV and RNA-dependent RNAP 2 (RDR2) and processed by Dicer (DCL) enzymes into 21- to 24-nt siRNAs, which are associated with different AGO protein complexes (AGO) for transcriptional or posttranscriptional gene silencing. However, it is not yet clear what fraction of RNAP IV-independent endogenous siRNAs, which are phenotypically normal but defective in siRNA production at all endogenous loci tested (16–19). RNAP IV exists in two distinct forms, one consisting of the subunits Nuclear RNA Polymerase D 1a (NRPD1a) and NRPD2a and the other composed of NRPD1b and NRPD2b. It has been proposed that the NRPD1a/NRPD2a form functions together with RDR2 in the production of siRNA precursors, whereas the NRPD1b/NRPD2b form is involved in the targeting of DNA methylation by siRNAs (RNA-directed DNA methylation, RdDM) (17, 19, 21–23). However, many questions concerning the functioning of RNAP IV remain unanswered, and the role of RNAP IV in siRNA production on a genome-wide scale remains unknown. It is also unclear to what extent RNAP IV acts together with RDR2 and the four DCL enzymes in Arabidopsis (15, 20, 24–27) or with downstream effectors such as AGO4 (28, 29) or AGO1 (9).

To address these questions on a genome-wide scale, we compared the siRNAs accumulated in wild-type and nrpd mutants through the cloning and sequencing of large quantities of siRNAs by using 454 technology. We found that RNAP IV is required for the production of >90% of all siRNAs. In addition, the siRNA profiles of wild type and nrpd mutants were compared with those of rdc2 and dcl2 dcl3 dcl4, as well as those associated with AGO1 and AGO4 (9, 20, 30). The most striking result from these comparisons was the strong similarity among the profiles of siRNAs that depend on RNAP IV and RDR2. We also identified a class of RNAP IV-independent endogenous siRNAs derived from single-stranded hairpin precursors that were found to persist in both nrpd and rdr2 mutants. These results strongly support the notion that RNAP IV functions together with RDR2 in the synthesis of double-stranded siRNA precursors. Finally, by reintroducing wild-type copies of the RNAP IV genes into previously mutant backgrounds, we found that the profiles of siRNAs were reestablished in a remarkably faithful manner, suggesting that RNAP IV may be recruited to a specific set of genomic loci in the absence of prior siRNA signals.

Results and Discussion

Characterization of siRNA Diversity by Large-Scale 454 Sequencing. To infer the function of RNAP IV, we characterized and compared the

Author contributions: X.Z. and S.E.J. designed research; X.Z., I.R.H., and C.L. performed research; P.J.G. contributed new reagents/analytic tools; X.Z. analyzed data; X.Z. wrote the paper; and S.E.J. edited the paper.

The authors declare no conflict of interest.

This article is a PNAS direct submission. Freely available online through the PNAS open access option.

Abbreviations: siRNA, small RNA; miRNA, microRNA; tasiRNA, transacting siRNA; nat-siRNA, natural-antisense siRNA; tRNA, RNA polymerase; PM, perfectly matched Arabidopsis sequences; MPSS, massively parallel signature sequencing; RISC, RNA-induced silencing complex; RDR2, RNA-dependent RNAP 2.

†To whom correspondence should be addressed. E-mail: jacobsen@ucla.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/0611456104/DC1.

© 2007 by The National Academy of Sciences of the USA
sRNA populations accumulated in wild-type and nrpd mutant plants through the cloning and sequencing of large numbers of sRNAs by using 454 technology (Table 1). sRNAs reads (76,772) were generated from wild-type inflorescences, of which 56,170 (>73%) perfectly matched the *Arabidopsis* genomic sequence over their entire length (PM). A small fraction of PM sRNAs (404 reads; 0.5%) matched abundant cellular RNAs (e.g., tRNAs) and were eliminated from further analyses, because they could represent degradation products. Of the remaining PM reads, 10,408 were miRNAs (18.7%), 799 matched tasiRNAs (1.4%), and 44,559 were primarily siRNAs (79.9%).

The 454 data set from the wild-type Columbia strain generated here was ~7-fold larger than a previous 454 sRNA study (20), making many detailed analyses possible. The coverage of this data set was evaluated by comparing it to the 721,044 wild-type inflorescence sRNA reads generated by using a different method, massively parallel signature sequencing (MPSS), which is higher throughput but does not provide information about the size of the siRNA, because it generates only 17-mer sequences (31). All four tasiRNAs and 31 of the 35 miRNAs present in the MPSS data set were found in our 454 data set; we also recovered two additional low-copy miRNA families that were not in the MPSS data set. With regard to siRNAs, 5,044 of the 5,363 moderate or dense siRNA clusters (>94%) defined by the MPSS data were represented by the 454 data set. These results suggest that the 454 data set generated here provides a reasonable representation of the sRNA population in wild-type inflorescences.

One major technological advantage of 454 sequencing compared with MPSS is its ability to sequence through the entirety of cloned sRNAs, thus revealing the length of each sRNA and providing with MPSS is its ability to sequence through the entirety of cloned sRNAs, thus revealing the length of each sRNA and providing

Table 1. Summary of sRNA sequences used in this study

<table>
<thead>
<tr>
<th></th>
<th>Wild type</th>
<th>nrpd1a/b</th>
<th>nrpd2a/b</th>
<th>F1*</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAW sequences</td>
<td>76,772</td>
<td>106,905</td>
<td>72,604</td>
<td>78,293</td>
</tr>
<tr>
<td>Perfectly matched to</td>
<td>56,170 (72.2%)†</td>
<td>78,067 (73.0%)†</td>
<td>49,017 (67.5%)†</td>
<td>55,070 (70.3%)†</td>
</tr>
<tr>
<td>genome</td>
<td>1:1.3:1.5</td>
<td>1:0.35:1.99</td>
<td>1:0.35:1.99</td>
<td>1:0.35:1.99</td>
</tr>
<tr>
<td>Filtered out†</td>
<td>404 (0.5%)†</td>
<td>2,361 (0.2%)†</td>
<td>1,145 (0.2%)†</td>
<td>932 (0.1%)†</td>
</tr>
<tr>
<td>miRNAs§</td>
<td>10,408 (18.7%)§</td>
<td>54,501 (72.0%)§</td>
<td>32,082 (67.0%)§</td>
<td>8,416 (15.5%)§</td>
</tr>
<tr>
<td>tasiRNA</td>
<td>799 (1.4%)§</td>
<td>4,491 (5.9%)§</td>
<td>2,561 (5.3%)§</td>
<td>959 (1.8%)§</td>
</tr>
<tr>
<td>siRNAs§</td>
<td>44,559 (79.9%)§</td>
<td>16,714 (22.1%)§</td>
<td>13,229 (27.6%)§</td>
<td>44,763 (82.7%)§</td>
</tr>
</tbody>
</table>

†From the cross nrpd1a/b X nrpd2a/b.
§As percentage of raw sequences.
¶May contain unidentified miRNAs and tasiRNAs.
‡Matched abundant cellular RNAs such as tRNAs.
§As percentage of perfect matches to the genome and excluding those that were filtered out.

Production of sRNAs by using 454 technology (Table 1). sRNAs reads (76,772) were generated from wild-type inflorescences, of which 56,170 (>73%) perfectly matched the *Arabidopsis* genomic sequence over their entire length (PM). A small fraction of PM sRNAs (404 reads; 0.5%) matched abundant cellular RNAs (e.g., tRNAs) and were eliminated from further analyses, because they could represent degradation products. Of the remaining PM reads, 10,408 were miRNAs (18.7%), 799 matched tasiRNAs (1.4%), and 44,559 were primarily siRNAs (79.9%).

The 454 data set from the wild-type Columbia strain generated here was ~7-fold larger than a previous 454 sRNA study (20), making many detailed analyses possible. The coverage of this data set was evaluated by comparing it to the 721,044 wild-type inflorescence sRNA reads generated by using a different method, massively parallel signature sequencing (MPSS), which is higher throughput but does not provide information about the size of the siRNA, because it generates only 17-mer sequences (31). All four tasiRNAs and 31 of the 35 miRNAs present in the MPSS data set were found in our 454 data set; we also recovered two additional low-copy miRNA families that were not in the MPSS data set. With regard to siRNAs, 5,044 of the 5,363 moderate or dense siRNA clusters (>94%) defined by the MPSS data were represented by the 454 data set. These results suggest that the 454 data set generated here provides a reasonable representation of the sRNA population in wild-type inflorescences.

One major technological advantage of 454 sequencing compared with MPSS is its ability to sequence through the entirety of cloned sRNAs, thus revealing the length of each sRNA and providing important clues regarding its origin and biological function. In *Arabidopsis*, different DCL enzymes usually produce sRNAs with distinct lengths. In general, DCL1 produces 21-mer miRNAs and nat-siRNAs, DCL2 produces 22 mers, DCL3 produces 24-mer siRNAs, and DCL4 produces 21-mer tasiRNAs. Therefore, we focused our analyses on these three size classes, 21, 22, and 24 mers (see Methods). As shown in Fig. 1, in wild type, the ratio of 21:22:24 mers is ~1:0.35:1.99 for all sRNAs and 1:1.25:7.59 for siRNAs. Thus, the vast majority of siRNAs in wild type are 24 mers.

Consistent with their role in silencing transposons and other repetitive sequences, siRNAs of all three size classes showed a marked enrichment in heterochromatic regions where transposons and other repeats cluster [supporting information (SI Fig. 4)]. All three sizes were also found to be depleted from genes with known functions (SI Fig. 5). Interestingly, different size classes appeared to be preferentially associated with different types of repeats. In particular, 24 mers were more frequently associated with dispersed repeats than with tandem and inverted repeats, but 21 and 22 mers were more frequently associated with inverted and dispersed repeats than with tandem repeats (SI Fig. 6).

Considering these differences and the dependence of sRNA production on distinct DCL enzymes, 21-, 22-, and 24-mer siRNAs were analyzed separately. In addition, we used a proximity-based algorithm to group sRNAs into clusters (i.e., genome regions corresponding to multiple closely spaced sRNAs; see Methods) (31). These clusters may represent “sites of action,” where sRNAs were produced. In this way, 686 21-mer clusters, 952 22-mer clusters, and 5,703 24-mer clusters were defined. Interestingly, the majority of 21- and 22-mer clusters, as well as a substantial fraction of 24-mer clusters, overlapped with each other (~84%, ~85%, and ~21%, respectively; SI Fig. 7), suggesting that multiple sRNA-producing machineries (e.g., multiple DCLs) may coexist and/or function together at numerous loci genome wide.
lates while the other strand (miRNA*) is degraded. In contrast, at
containing RNA-induced silencing complex (RISC) and accumu-
strand of the DCL1 product (miRNA) is loaded into AGO1-
DCLs are involved in siRNA production at
from our data set were 21 mers (not shown). In contrast, all four
blot analyses (1–6, 20), as well as the fact that nearly all miRNAs
shown by previous genetic studies and numerous miRNA Northern
sively by DCL1 into a single size class (almost always 21 mers), as
There are, however, two major differences between the processing of miRNA precursors and
hairpin RNAs. First, miRNA precursors are processed exclud-
by DCL1 into a single size class (almost always 21 mers), as
shown by previous genetic studies and numerous miRNA Northern
analyses (1–6, 20), as well as the fact that nearly all miRNAs
from our data set were 21 mers (not shown). In contrast, all four
DCLs are involved in siRNA production at IR71 (20). Second, one
strand of the DCL1 product (miRNA) is loaded into AGO1-
containing RNA-induced silencing complex (RISC) and accumu-
while the other strand (miRNA*) is degraded. In contrast, at
IRD71, siRNAs derived from both strands of imperfectly matched
regions accumulate to similar levels (Fig. 2). Taken together, these
results uncover similarities in the biochemical properties of the four
DCLs but also suggest the involvement of additional factors in
distinguishing miRNA precursors from other single-stranded
hairpin RNAs.

DNA Methylation in siRNAs Clusters. siRNAs target de novo DNA methylation in Arabidopsis (17, 19, 28, 34–36), and the majority of
miRNA clusters identified by using MPSS correspond to regions containing DNA methylation (37). However, it is not clear whether
21, 22, and 24 mers have a similar role in directing DNA methyl-
aton. To address this question, we first identified all siRNA clusters of
a single size class (i.e., those that did not overlap with another
cluster of a different size) and then determined the fractions of
these clusters that colocaled with DNA methylated regions. As
shown in SI Fig. 8, siRNAs of all three size classes were found to
 colocalize with methylated regions with frequencies that were
higher than the genome average. However, a much higher fraction
of 24- than 22-mer clusters were methylated, and 21-mer clusters
were the least methylated (∼41.8% for 21 mers, ∼63.8% for 22
mers, and ∼90.1% for 24 mers, compared with the genome average
level of methylation of ∼18.9%). This is in agreement with the
previous finding that DCL3 products (24 mers) play a major role in
RdDM, but DCL2 and DCL4 products can also direct DNA
methylation at some loci (20).

RNAP IV Plays a Pivotal Role in siRNA Biogenesis. To explore the
function of RNAP IV on a genome-wide scale, we cloned and
sequenced 106,905 sRNAs from the inflorescences of nrpa1a/lb
double mutant plants, of which 75,706 were PMs. A total of 54,501
reads were found to be miRNAs, and 4,491 were tasiRNAs. Neither
the ratio of miRNA to tasiRNA (∼13.0 for wild type and ∼12.1 for
nrpa1a/lb) nor the relative abundance of individual miRNA or
tasiRNA families was affected in this mutant (SI Fig. 9). This
is consistent with previous results examining individual miRNAs or
tasiRNAs by using Northern blots, as well as the fact that the
nrpa1a/lb mutant is phenotypically normal (16–19). Taken

Comparison of the remaining 16,714 sRNAs from nrpa1a/lb to
slices. Notably, a much higher fraction of 21-mer unique PM clusters
(13 of 29; 44.8%) were found to be single-stranded than 22-mer
unique PM clusters (6 of 53; 11.3%) or 24-mer unique PM clusters
(8 of 325; 2.5%). These results likely represent a conservative
estimate of the abundance of single-stranded siRNA clusters ge-
nome-wide, because most siRNA clusters correspond to repetitive
sequences, which would not have met these conservative criteria
(containing ≥10 unique PMs).

One example of a single-stranded siRNA cluster is INVERTED
REPEAT 71 (IR71), a large inverted repeat where all four DCLs are
involved in siRNA production (20). As shown in Fig. 2a, virtually
all unique PMs found at this locus were derived from the Crick
strand of the genome, including 59 of the 60 21 mers, all 106 22
mers, and all 35 24 mers (Fig. 2a). In addition, all 712 siRNAs from
the wild-type MPSS data set that mapped uniquely to this locus
were found to be derived from the Crick strand, and virtually all
unique PMs isolated from mutants such as rdr2 and nrpa1a/lb
(454), and nrpa1a/lb (454), and

Fig. 2. The locus IR71 as an example of siRNAs produced from single-stranded hairpin RNA precursors. (a) All individual siRNAs at IR71 that matched a unique
position in the genome isolated from wild type (454 or MPSS), nrpa1a/lb (454), and rdr2 (MPSS). Vertical color bars, individual siRNAs; pink horizontal bars, the
two arms of the inverted repeat. siRNAs shown above the inverted repeats matched the Watson strand, and those below matched the Crick strand of the genome.
(b) Examples of siRNAs produced from the imperfectly matched regions (red dots) of the predicted single-stranded hairpin of IR71. Horizontal bars, siRNAs that
match the left (above the alignment) or right arm (below the alignment).
those from wild type revealed several major differences. First, there is a vast reduction in siRNA abundance for all three size classes. As normalized by the number of miRNAs and tasiRNAs, the sequencing of the siRNAs from *nrpd1a/1b* was approximately 5.2- to 5.6-fold deeper than wild type, yet 2.7-fold fewer siRNAs were recovered. Thus, there was a 14- to 15-fold reduction in the abundance of siRNAs in *nrpd1a/1b* compared with wild type, indicating that the production of ~95% of all siRNAs in wild-type plants required RNAP IV activity. Consistent with this estimate, only ~9.7% of individual siRNA reads from wild type mapped to siRNA clusters that persisted in *nrpd1a/1b* (Table 2). Second, a smaller fraction of 21 mers (~54.6%) were lost in *nrpd1a/1b* than 22 mers (~84.0%), whereas nearly all 24 mers (~98.9%) were eliminated. As a consequence, the most abundant size class was found to be 21 mers, whereas 24 mers were sparse; the ratio of 21:22:24 mers became 1:0.43:0.18 (in contrast to 1:1.25:7.59 for wild type; Fig. 1). Third, in *nrpd1a/1b*, although the chromosomal locations of 22 and 24 mers remained largely heterochromatic, the distribution of 21 mers was more sporadic (SI Fig. 4). Finally, in *nrpd1a/1b*, significantly smaller fractions of siRNAs from all three sizes classes were found to be derived from dispersed or tandem repeats, but a marked increase was observed in the fractions of 21 and 24 mers associated with inverted repeats (SI Fig. 6).

The siRNA clusters remaining in *nrpd1a/1b* were examined further for their strandedness and for structural characteristics of the corresponding genomic regions. For this analysis, we focused on clusters containing ≥10 or more unique PMS, as described above. All 22- and 24-mer clusters (seven and three, respectively), as well as the majority of 21-mer clusters (19 of 29; 65.5%) in *nrpd1a/1b* that met this criterion were found to be strand-specific and to localize within inverted repeats (SI Table 4). Four of the remaining 10 21-mer clusters were also strand-specific and processed from single-stranded RNA with secondary structures that resembled miRNA precursors (SI Fig. 10); these loci were not initially identified as inverted repeats, because the matched regions were relatively short. Additionally, most strand-specific siRNA clusters present in wild type were retained in *nrpd1a/1b* (SI Table 3). Taken together, these results suggest that the RNAP IV activity is required for the production of the vast majority of all siRNAs in the *Arabidopsis* genome except for miRNAs, tasiRNAs, and siRNAs produced from single-stranded hairpin RNA precursors. This is consistent with the fact that all individual endogenous siRNAs tested by RNA blot analysis in previous studies depend on RNAP IV (16–19, 23), but siRNAs derived from a highly expressed inverted-repeat transgene driven by a Pol II promoter (which may resemble the single-stranded hairpin RNA precursors described here) were found to be RNAP IV-independent (17).

The correlation of RNAP IV-independent siRNA clusters and DNA methylation was examined in a manner similar to that described above. siRNA clusters of all three size classes were found to be methylated at levels significantly higher than genome average (~40.0% for 21 mers, ~53.1% for 22 mers, and ~77.8% for 24 mers). Furthermore, RNA-directed DNA methylation was indeed previously shown at *IR71*, a locus shown in this study to produce RNAP IV-independent single stranded siRNAs (20). These results suggest that RNAP IV-independent siRNAs can also direct DNA methylation, which is consistent with the finding that a considerable number of RNAP IV-independent siRNAs are associated with AGO4 (see below).

Robustness of RNAP IV Function at Defined Genomic Loci. Although RNAP IV is critically important in siRNA production, little is known about the early events in this process. For example, it is unknown whether the RNAP IV complexes are localized to specific genomic loci, or whether the prior existence of siRNAs is required to guide such localization in a self-reinforcing manner. The requirement of multiple subunits for RNAP IV function allowed the use of genetic strategies to address these questions. Considering that the RNAP IV activity is lost in either *nrpd1a/1b* or *nrpd2a/2b* (refs. 16–19, and see below), it was of interest to determine to what extent siRNA production can resume when the wild-type functions of all subunits are restored. We therefore crossed the *nrpd1a/1b* and *nrpd2a/2b* mutants together and examined the siRNA profiles of the progeny (F1 plants) containing a wild-type copy of each gene.

We sequenced 72,604 and 78,293 sRNAs isolated from the inflorescences of *nrpd2a/2b* and the F1 plants, respectively (Table 1). Consistent with the requirement of NRDP2a for NRDP1a/1b activities, the siRNA profile of *nrpd2a/2b* was found to be virtually the same as *nrpd1a/1b*. Remarkably, the F1 plants shared a nearly identical siRNA profile with wild type. Approximately 93.8% of 21-mer clusters, ~92% of 22-mer clusters, and ~98.4% of 24-mer clusters in wild type were also present in the F1. Conversely, ~97.3% of 21-mer clusters, ~93.2% of 22-mer clusters, and ~99.2% of 24 mers in the F1 were also present in wild type. The subtle differences could be due to sampling, because clusters present only in wild type or F1 were of relatively low abundance (not shown). These results were further validated by Northern blot analyses at two loci (Fig. 3a).

To determine whether the function of siRNAs in directing DNA methylation is also restored, we examined the DNA methylation status of *MEDEA–INTERGENIC SUBTELOMERIC REPEAT*
NRPD2A/2B in independent manner. The remaining three clusters are also present in siRNAs. We found that 28 of the 31 clusters in abundant siRNA clusters in dcl3 dcl4 nrpd1a/1b were compared these siRNAs to those identified here from a previous study, of which 1,586 were siRNAs produced by DCL1, the rdr2 ters (i.e., those present in wild type but not in mutants). All siRNAs showed a marked decrease in the abundance of siRNAs and DCL2 in these mutants suggest that RNAP IV and RDR2 function together to generate dsRNAs as siRNA precursors. The immediate and full restoration of the production and function of siRNAs in F1 plants could be explained in at least two ways. First, it is possible that the recruitment of the NRPD1A/2A complex to specific genomic loci to initiate siRNA production is extremely efficient and reproducible. If so, certain signal(s) might persist on the chromosomes in the absence of siRNAs or siRNA-directed DNA methylation. CG DNA methylation may be a plausible candidate mark; however, at the FWA locus, DNA methylation does not seem to be required for the recruitment of RNAP IV activity (38). A second possibility is that a component of the NRPD complexes could remain associated with chromatin in the mutants used in this study. For instance, although NRPD2A is unstable in nrpd1a/1b, and NRPD1B is unstable in nrpd2a/2b, NRPD1 remains roughly at wild-type level in nrpd2a/2b (19). It is, therefore, possible that NRPD1 is still bound to its sites of action in these mutants, and siRNA production resumes when NRPD2A is restored. In either case, these results strongly suggest that the NRPD1A/2A complex is localized or recruited reproducibly to specific loci in the genome, and this targeting does not appear to require the prior existence of siRNAs or the DOMAINS RE-ARRANGED METHYLASE (DRM)-dependent DNA methylation that depends on siRNAs.

Similar Roles of RNAP IV and RDR2 in siRNA Biogenesis. If RNAP IV and RDR2 function together to generate dsRNAs as siRNA precursors, the loss of the RNAP IV and RDR2 activities should result in similar defects in siRNA biogenesis. To test this on a genome-wide scale, we compared the siRNAs accumulated in nrpd1a/1b and rdr2. A large number of siRNAs (~1,160,000) were recently generated from rdr2 by using MPSS, and analyses of these siRNAs showed a marked decrease in the abundance of siRNAs and enrichments of miRNA and tasiRNA siRNAs (30). We found that nearly all siRNA clusters identified in nrpd1a/1b were also found as siRNA clusters in rdr2, including 175 of 182 21-mer clusters (~96.2%), 91 of 93 22-mer clusters (~97.8%), and 96 of 97 24-mer clusters (~99.0%). Additionally, ~98.5% of all RNAP IV-dependent clusters (i.e., those present in wild type but not in nrpd1a/1b) were found to be lost in rdr2. The high level of correlation despite the differences in sequencing methods strongly suggests that, in support of the model above, the nrpd1a/1b and rdr2 mutants display largely the same defects in siRNA genesis.

Relationship Between RNAP IV and DICER Functions in siRNA Biogenesis. We analyzed 11,427 sRNA sequences from dcl2 dcl3 dcl4 in a previous study, of which 1,586 were siRNAs produced by DCL1, the only remaining DICER enzyme in this mutant background (20). We compared these siRNAs to those identified here from nrpd1a/1b (primarily processed from single-stranded hairpin RNAs) to determine the dependence of the siRNA clusters in dcl2 dcl3 dcl4 on RNAP IV. For this analysis, we focused on relatively abundant siRNA clusters in dcl2 dcl3 dcl4 (those with ≥10 siRNAs) to avoid sampling artifacts caused by clustering of relatively sparse siRNAs. We found that 28 of the 31 clusters in dcl2 dcl3 dcl4 were also present in nrpd1a/1b. Therefore, in dcl2 dcl3 dcl4, the major role of DCL1 in siRNA biogenesis appears to be the processing of single-stranded hairpin RNAs produced in an RNAP IV-independent manner. The remaining three 3 dcl2 dcl3 dcl4 clusters were present in wild type as clusters of all three sizes with siRNAs matching both strands but were entirely missing from nrpd1a/1b, suggesting they were likely produced by RNAP IV-dependent dsRNAs. At all three loci, only 21-mer clusters remained in dcl2 dcl3 dcl4 (SI Fig. 11). It thus appears that DCL1, in rare cases, can process RNAP IV-dependent dsRNA substrates.

Relationship Between RNAP IV and AGO Functions in siRNA Biogenesis. The sRNAs generated by the DCL enzymes are incorporated into RISCs containing different AGO proteins to perform different downstream functions. Specifically, miRNAs are incorporated into AGO1-containing RISC (8), siRNAs are incorporated into AGO4-containing RISC (9, 23), and the normal functions of tasiRNAs require AGO7 (26, 39, 40). A large number of sRNAs associated with AGO1 or AGO4 have recently been reported (9). To determine whether the siRNAs produced by RNAP IV are preferentially associated with AGO1 or AGO4, we analyzed the relative abundance of siRNAs in AGO1 and AGO4 that were derived from RNAP IV-dependent or independent clusters. As shown in Table 2, a significantly larger fraction of AGO1-associated siRNAs (~44.4%) were derived from RNAP IV-independent clusters than of the total siRNAs in wild type (~9.7%). In contrast, AGO4 exhibited a slight preference for RNAP IV-dependent siRNAs (Table 2), suggesting that the majority of siRNAs produced by RNAP IV are incorporated into AGO4. Furthermore, a detailed comparison revealed that AGO1 was preferentially associated with 21- and 22-mer (but not 24-mer) RNAP IV-independent siRNAs. In contrast, AGO4 was associated with significantly smaller fractions of 21 and 22mers, but a higher fraction of 24mers that were RNAP IV-independent. Thus the association of RNAP IV-independent siRNAs with either AGO1 or AGO4 appeared to be affected by their lengths. These results suggest that the origins of siRNA precursors (e.g., dsRNAs or single-stranded hairpin RNAs) may not be the primary determinant for which AGO they are associated with. Instead, the particular DCL enzymes processing these precursors or the lengths of the resulting siRNAs may play more important roles in determining their association with particular RISCs and their downstream functions.

Conclusions

sRNA data can be downloaded or visualized along with DNA methylation and related data from http://epigenomics.medb. ucla.edu/smallRNAs; all siRNAs described here are also included in SI Datasets 1–5. Our analyses of large numbers of sRNA sequences from wild type and several mutants have provided important insights into the role of RNAP IV in siRNA metabolism and function on a genome-wide scale. First, we found that RNAP IV is required for the production of the vast majority of all siRNAs; however, we also discovered a considerable number of endogenous siRNAs produced from single-stranded hairpin RNAs in an RNAP IV-independent manner. All four DCLs appear to be involved in this process by “dicing” hairpin RNA precursors even in regions that do not perfectly match. This observation uncovered a previously unknown biochemical property of DCL2, DCL3, and DCL4, thus raising the interesting question of what distinguishes a normal hairpin RNA (processed by all four DCLs) from a miRNA precursor (processed by DCL1 only). It is also interesting to consider that, because miRNAs are critically important in regulating plant development, their precursors may have evolved to be specifically recognized and processed by DCL1 such that miRNAs are accurately generated. In contrast, other single-stranded hairpin RNAs with no developmental functions or evolutionary constraints are more likely to be promiscuously recognized and processed by all four DCLs. Second, the nearly identical sRNA profiles of nrpd and rdr2 mutants suggest that RNAP IV and RDR2 function together to produce dsRNAs, and that other RDR genes cannot substitute RDR2 in this process. Third, DCL1 primarily processes single-stranded hairpin RNAs (including miRNA precursors) but can occasionally process RNAP IV-dependent dsRNAs. Interestingly, this latter case resembles the production of nat-siRNAs with regard to the requirement for RNAP IV and DCL1 (13). Fourth, we found that RNAP IV-dependent and independent siRNAs are preferen-
siRNA Isolation, Cloning, and 454 Sequencing. Plants were grown on soil under continuous light, and all genotypes were grown side by side to minimize potential variations caused by environmental factors. Floral tissues, including inflorescence meristem, floral buds, and open flowers, were used for this study. siRNA isolation, gel purification, cloning, and sequencing were performed as described (20, 30).

Bioinformatic Analyses of siRNA Sequences. Analyses of siRNA sequences were performed as described (20, 30). Only 21-, 22-, and 24-mer PMs were analyzed further (Table 1). Although a significant number of 23 mers were also recovered, they did not appear to represent a unique size class, because nearly all 23 mers overlapped with 24-mer clusters. siRNA clusters were defined similarly to that recently published (three or more siRNA reads that were <500 bp apart) (31).

siRNA, RNA Blot Analysis, and Bisulfite Sequencing. sRNA extraction, RNA blot analysis, and bisulfite sequencing were performed as described (20).

We thank Drs. Craig Pikaard (Washington University, St. Louis, MO) and Thierry Lagrange (Université de Perpignan, Perpignan, France) for providing the nrpda1a/b and nrpda2a/b mutants, Dr. Blake Meyers (University of Delaware) for providing the rdr2 siRNA sequences, Drs. Yijun Qi (National Institute of Biological Sciences, Beijing, China) and Greg Hannon (Cold Spring Harbor Research Laboratory, Cold Spring Harbor, NY) for providing siRNA sequences associated with AGO1 and AGO4, and Drs. Matteo Pellegrini and Shawn Cokus (University of California, Los Angeles) for implementing the web browser. Research in the laboratory of P.J.G. is supported by National Science Foundation Grant Oeb85569. X.Z. is also supported by a postdoctoral fellowship from the Jonsson Cancer Center Foundation. I.R.H. was supported by a European Molecular Biology Organization long-term postdoctoral fellowship. Research in the laboratory of S.E.J. is supported by National Institutes of Health Grant GM60398 and a grant from the National Institutes of Health ENCODE Program HG003523. S.E.J. is an investigator of the Howard Hughes Medical Institute.

Methods

Plant Materials. All Arabidopsis plants used in this study are of the Columbia (Col-0) accession. The nrpda1a/b and nrpda2a/b double mutants have been described (18, 19).